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Zero Reflection Coefficient in Discretized PML
Jaakko S. Juntunen, Member, IEEE, Nikolaos V. Kantartzis, Student Member, IEEE, and

Theodoros D. Tsiboukis, Senior Member, IEEE

Abstract—In this paper we present a closed-form reflection coef-
ficient for the perfectly matched layer (PML), when realized using
the finite-difference time-domain (FDTD) algorithm. Examining
the reflection coefficient, it is found that zero reflection can be ob-
tained for isolated pairs of frequency and angle of incidence.

Index Terms—FDTD, PML.

I. INTRODUCTION

I N A RECENT study [1] the optimization of the Berenger’s
perfectly matched layer (PML) absorbing boundary condi-

tion (ABC) [2] has been comprehensively discussed. In this
letter, we provide closed-form expression for the reflection co-
efficient from PML as a function of PML parameters, called for
in [1].

The optimization has been discussed previously in several pa-
pers [3]–[8]. In [3], Wu and Fang make numerical experiments
with polynomial profiles and propose optimal polynomial ex-
ponent as a function of thickness of the PML. In [4], Berenger
analyzes the numerical reflection produced by PML, mainly by
numerical experiments and observations, and suggests geomet-
rical progression in the conductivity profile instead of a polyno-
mial one.

In paper [5], Fang and Wu also derive a closed-form expres-
sion of the reflection at PML interfaces. Basically, the expres-
sion in [5] seems to be derived in similar fashion than ours, but
[5] misses the zero-reflection property of the discretized PML.
Furthermore, in [1], it is complained that so far published analyt-
ical expressions do not accurately predict numerical reflections
for all angles and incident waveforms.

In [6], Chew and Jin perform an analysis for the PML in dis-
cretized space. The optimization is done via minimization of a
cost function, taking into account the angle of incidence as well.

In [7], Lazzi and Gandhi utilize a “pseudoanalytical” formula
in optimal design of the PML. However, polynomial profile is
again presumed.

Finally, in paper [8], Marengo and Rappaport optimize the
profile over polynomials by numerically minimizing a cost
function. As in [6], the angle of incidence can be taken into
account explicitly.
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In this letter, we demonstrate that PML can be optimized to
yield exactly zero reflection for isolated pairs of frequency and
angle of incidence. Matlab-codes are given in the Appendix to
evaluate the reflection from one-dimensional (1-D) and two-di-
mensional (2-D) PML layers.

II. 1-D EXPRESSION

In all cases, we assume a PEC condition in the outer
boundary of PML. Basically, we proceed recursively from the
PEC boundary toward vacuum/PML interface. We assume that
incident and reflected waves are plane waves outside the PML
region

(1)

(2)

Here stands for both the electric and magnetic fields. Inside
PML we do not assume any special form for the fields, but just
apply FDTD equations to the unknown fields. Finally, we are
able to relate incident and reflected waves outside the PML.
Given simulation parameters , and frequency , we de-
fine the dimensionless stability and resolution parameters

(3)

where is the speed of light in free space. The electric and
magnetic conductivity values of the PML are normalized as fol-
lows:

for electric conductivity (4)

for magnetic conductivity. (5)

Here . Furthermore, to simplify notations, we
define the following parameters:

(6)

(7)

(8)

The index runs over all conductivity locations, say
. Numerical dispersion relation implies that

(9)

where is the numerical wavenumber. Finally, let

(10)
Then the reflection coefficient is

(11)
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TABLE I
SAMPLE OPTIMIZED CONDUCTIVITY PROFILE

Fig. 1. Reflection characteristics of a sample optimized conductivity profile
in one dimension (1-D). Conductivity values given in Table I are used.

Obviously, the zero-reflection condition is

(12)

The following conclusions hold:

• for conductivity parameters, it is possible to obtain zero
reflection at distinct frequencies;

• becomes real at dc. Thus, for conductivity pa-
rameters, it is possible to obtain zero reflection at dc and

distinct frequencies.
As an example, Table I shows normalized conductivity

parameters that yield for a set of normalized frequencies
[0, 0.067, 0.125, 0.172, 0.197]; here .

The conductivity parameters are found by solving (12)
using multidimensional Newton iteration. In the following,

. Fig. 1 shows corresponding . For band
, the absorption is better than98 dB.

In the Appendix, the steps (6)–(11) are implemented in a
short Matlab-code “rho_d.” For example, the following lines
in Matlab produce [1, Fig. 5]:

• ; [0.018, 0.0162, 0.0153]; ;
• ^p;
• ; ; ;
• ;
• rho 1d ; rho 1d ;

rho 1d ;
• plot .

Note that the conductivity values are normalized by.

III. T WO-DIMENSIONAL EXPRESSION

The 2-D case can be analyzed in the same way than the 1-D
case. The analysis is lengthy, but the result greatly resembles the
1-D case. However, we have found that the approach utilized

TABLE II
OPTIMIZED EIGHT-LAYER CONDUCTIVITY PROFILE FORWIDE-ANGLE

ABSORPTION

in [1] is more efficient, resulting in faster optimization of the
PML parameters. In short, a 2-D wave is considered equivalent
to a 1-D wave propagating with a velocity . Numerical
dispersion is discarded here. Given and frequency

, we first introduce a cell-shape parameter

(13)

The stability parameter is

(14)

We now define the resolution parameter through diagonal di-
mension of a cell

(15)

The subscripts highlight the 2-D context. Three-line
Matlab-code “rho_d” in the Appendix evaluates the re-
flection coefficient, exploiting the 1-D code “rho_d.” For
example, the simulated reflection coefficients given in [1,
Table I], can be accurately reproduced:

• ; ; ;
• ;
• ; ;
• ;
• for , ;

for , rho_2d
; end; end;

•
The result is , to be compared
with in [1].

IV. WIDE ANGLE ABSORPTION

In a 2-D-problem, it is possible to obtain zero reflection for
discrete frequencies and angles. With an-layer PML having

parameters, one can obtain zero reflection for -pairs.
The corresponding parameters can be found using, e.g., Newton
iteration.

We consider two examples. First, we optimize an 8-layer
PML in the same angular and frequency range as in [1, Ta-
bles I–VII]: ranges from 0 to 75at 5 increments, and
has three values 15/ , 20/ and 30/ . The optimized
and normalized parameters are given in Table II. This single
profile yields maximum reflection 113 dB over all ,
combinations involved, even without the weighting function
used in [1]. Note that a separate profile is optimized for each
resolution in [1].
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TABLE III
OPTIMIZED FOUR-LAYER CONDUCTIVITY PROFILE FOR A WAVEGUIDE

PROBLEM

Fig. 2. Predicted and simulated reflection coefficient as functions of frequency
in a parallel-plate waveguide problem. Four-layer polynomial and optimized
conductivity profiles are used.

As a second example, we consider a parallel-plate waveguide
problem . The normalized
cut-off frequency of the waveguide is . We optimize
a 4-layer PML in a band starting from . A
wave component forms an angle
with the -axis. Thus, we choose four frequency-angle pairs

as design parameters. A good choice is
[0.08, 0.098, 0.145, 0.187]; the related conductivities are given
in Table III.

Fig. 2 presents the predicted and simulated reflection coeffi-
cients of the waveguide problem. The reference solution is ob-
tained using a much larger computational volume. Also shown
are results due to a polynomial profile of equal thickness with
parameters and , given in [5]. Optimized
profile results reflection less than82 dB over a band

, while the polynomial profile yields reflection
less than 54 dB over the same band. Due to numerical dis-
persion, the zeros in are not perfect. Using a truly 2-D opti-
mization, they can be made exact, but the overall absorption is
not improved by doing so. Therefore, 1-D based optimization is
recommended.

V. CONCLUSIONS

Closed-form reflection coefficient for discretized PML is
given for propagating plane waves. Surprisingly, perfect ab-
sorption can be obtained for discrete -pairs. Polynomial
conductivity profiles are not optimal in general.

The utilization of the 1-D reflection formula in 2-D problem
seems to be generalizable to three-dimensional (3-D) case also;
this needs still to be confirmed. An analysis for evanescent
waves is also a preferred extension of the present work.

APPENDIX

Matlab-code “rho_d” evaluates the reflection coefficient of
a 1-D PML layer. Input parameters are given in (3). The con-
ductivity values are given as a single vector “.”

function r rho_1d(Q, R, s);
% Jaakko Juntunen 16.11.2000
N length(s); W 2/Q*sin(pi*Q./R);
k_delta 2*asin(W/2);
for i 1:N,

T(i, :) j*W s(i)*cos(pi*Q./R);
end;
CUM zeros(size(R));
for i 1:N,

CUM CUM T(N 1 i, :); CUM 1./CUM;
end;
U (j*W CUM).*exp(j*k_delta/2);
r (U exp(j*k_delta))./(1 U).

Matlab-code “rho_d” evaluates the reflection coefficient of
a 2-D PML layer. Input parameters are propagation direction
and the parameters given in (13)–(15). The conductivity values
are given as a single vector “.”

function r rho_2d(th, R2, Z, Q2, s);
% Jaakko Juntunen 16.11.2000
Q1 Q2/(cos(th)*sqrt(1+Z 2));
R1 R2*sqrt(1+Z 2)/(Z*cos(th));
r rho_1d(Q1, R1, cos(th)*s).
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