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Zero Reflection Coefficient in Discretized PML

Jaakko S. JuntunemMember, IEEE Nikolaos V. Kantartzis Student Member, IEEENd
Theodoros D. TsiboukjsSenior Member, IEEE

~ Abstract—in this paper we present a closed-formreflection coef-  In this letter, we demonstrate that PML can be optimized to
ficient for the perfectly matched layer (PML), when realized using  yield exactly zero reflection for isolated pairs of frequency and
the finite-difference time-domain (FDTD) algorithm. Examining angle of incidence. Matlab-codes are given in the Appendix to

the reflection coefficient, it is found that zero reflection can be ob- luate th flection f di . [ (1-D d two-di
tained for isolated pairs of frequency and angle of incidence. evaluate the refiection irom one-aimensiona (1-D) and two-di-
mensional (2-D) PML layers.

Index Terms—~DTD, PML.
Il. 1-D EXPRESSION

|. INTRODUCTION In all cases, we assume a PEC condition in the outer
N A RECENT study [1] the optimization of the Berengerpoundary of PML. Basically, we proceed recursively from the
perfectly matched layer (PML) absorbing boundary condPEC boundary toward vacuum/PML interface. We assume that
tion (ABC) [2] has been comprehensively discussed. In thigcident and reflected waves are plane waves outside the PML
letter, we provide closed-form expression for the reflection céegion

efficient from PML as a function of PML parameters, called for n oy i(wnAt—kIAz) 1)
in [1]. e, I e
The optimization has been discussed previously in several pa- Vi = 1/,,#@1'(“"At+kmw). (2)

pers [3]-[8]. In [3], Wu and Fang make numerical experiments i L ,
with polynomial profiles and propose optimal polynomial exHereV stands for both the electric and magnetic fields. Inside

ponent as a function of thickness of the PML. In [4], BerengdrVIL We do not assume any special form for the fields, but just
analyzes the numerical reflection produced by PML, mainly (PPYY FDTD equations to the unknown fields. Finally, we are

numerical experiments and observations, and suggests geo glle to relate incident and reflected waves outside the PML.

rical progression in the conductivity profile instead of a p0|ynOC_5|ven simulation parametersz, At and frequencyf, we de-

mial one. fine the dimensionless stability and resolution parameters

In paper [5], Fang and Wu also derive a closed-form expres- Q = coAt/ A, R = cy/(fAx) 3)
sion of the reflection at PML interfaces. Basically, the expres- ] S .
sion in [5] seems to be derived in similar fashion than ours, bifferéco is the speed of light in free space. The electric and
[5] misses the zero-reflection property of the discretized pMmimagnetic conductivity values of the PML are normalized as fol-

Furthermore, in[1], itis complained that so far published anal;}PWS:

ical expressions do not accurately predict numerical reflections ;N — oi BAzN, for electric conductivity ()
for all angles and incident waveforms. N _ o
In [6], Chew and Jin perform an analysis for the PML in dis- o; =o; pAwx/no  for magnetic conductivity.  (5)

reno = +/jo/e0. Furthermore, to simplify notations, we

cretized space. The optimization is done via minimization ofj\e
efine the following parameters:

cost function, taking into account the angle of incidence as we
In [7], Lazzi and Gandhi utilize a “pseudoanalytical” formula

in optimal design of the PML. However, polynomial profile is W =2sin(rQ/R)/Q (6)
again presumed. N
Finally, in paper [8], Marengo and Rappaport optimize the Si =0’ cos(rQ/K) Q)
profilg over polynomials by numer?cally minimizing a cgst T, =S; +jW. (8)
function. As in [6], the angle of incidence can be taken into ) ) . ) ]
account explicitly. The index: runs over all conductivity locations, say =
1, ..., M. Numerical dispersion relation implies that
kEAz = 2sin™' (W/2) 9)
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TABLE | TABLE I
SAMPLE OPTIMIZED CONDUCTIVITY PROFILE OPTIMIZED EIGHT-LAYER CONDUCTIVITY PROFILE FORWIDE-ANGLE
ABSORPTION

ol 00020276 | oF 0.1102515 | o 05736724
of 00133373 | oF 02125432 | of  0.9464381
o) 00458463 | o) 03592777 | ) 19711128

of 00045681 | of 0537346 | off  2.568003
of 00243114 | o 0771210 | o}  3.784911
of 00633731 | o) 1020632 | o  6.009493
95 . , , ol 0120092 | off 1260711 | ol 11546761
of 0206738 | o] 1508592
ol 0344225 | o)y 1.881498

-100}
in [1] is more efficient, resulting in faster optimization of the
PML parameters. In short, a 2-D wave is considered equivalent
to a 1-D wave propagating with a velocity cos 6. Numerical
105} dispersion is discarded here. Givar:, Ay, At and frequency
7/, we first introduce a cell-shape parameter
Z = Az/Ay. (13)
110 , , , The stability parameter is
o 0.05 0.1 0.15 0

2

Ireflection coefficient| [dB]

Normalized f}equencyl/R Q2= V14 Z2coAt/Ax. (14)
Fig. 1. Reflection characteristics of a sample optimized conductivity profild/e now define the resolution parameter through diagonal di-
in one dimension (1-D). Conductivity values given in Table | are used. mension of a cell
. . e NN 2 _ / 2
Obviously, the zero-reflection condition is Ro = AV A+ Ay? = coZ/(fAxV1+27).  (19)
U = pikde. (12) The subscripts highlight the 2-D context. Three-line
_ . Matlab-code “rho2d” in the Appendix evaluates the re-
The following conclusions hold: flection coefficient, exploiting the 1-D code “rhod.” For
« for 2n conductivity parameters, it is possible to obtain zerexample, the simulated reflection coefficients given in [1,
reflection atn distinct frequencies; Table 1], can be accurately reproduced:

» IJ becomes real at dc. Thus, fan + 1 conductivity pa- « Z=1;Q2=1;th = pi/180*(0 : 5 : 75);
rameters, it is possible to obtain zero reflection at dc and « 74 = [ones(1, 13), 10.2(=0.12%(5 : N
n distinct frequencies.

5:1

R2 = 1/sqrt(2)*[15, 20, 30]; p = [3.77, 3.74, 3.78];

As an example, Table | shows normalized conductivity « §f — [0.0152, 0.016, 0.0177];
parameters that yield = 0 for a set of normalized frequencies  « for; = 1 : 3, S = Sf(:)*376.73*((1 : 16)/16).”p(4);
f~ =10, 0.067, 0.125, 0.172, 0.197]; hel¥ = R~L. forj =1 : 16, r(i, j) =rho_2dth(j), R2(i), Z, Q2,
The conductivity parameters are found by solving (12) S); end; end;
using multidimensional Newton iteration. In the following, G = max(20* log 10(abs(r.* [Wg; Wg; Wg])")).
Q = 0.99. Fig. 1 shows corresponding(f"). For band The resultiss = {—90.16, —93.45, —98.79}, to be compared
Y =0---02(R > 5), the absorption is better thar®8 dB.  ith {-90.27, —93.71, —98.83} in [1].

In the Appendix, the steps (6)—(11) are implemented in a
short Matlab-code “rhald.” For example, the following lines
'n Matlab produce [L, Fig. S: In a 2-D-problem, it is possible to obtain zero reflection for

: bQ:—317,6a7?;([?1.0.1?6)(}.1061)636.0.0153}1 = 3675; discrete frequencies and angles. Withratayer PML having

nap AR .. 2n parameters, one can obtain zero reflectionff, «)-pairs.
* s1=a(1)"h; 52 = a(2)"b; 53 = a(3)°D; The corresponding parameters can be found using, e.g., Newton
« R =15 : 100;

IV. WIDE ANGLE ABSORPTION

e . o iteration.
:ﬁo_ldr(hcg_lfg(%)ﬁ’ s1); 72 = tho.1d(@, K, s2); r3 = We consider two examples. First, we optimize an 8-layer
« PIOt(R, 20 log 10(abs([rL; 12 r3]))). PML in the same angular and frequency range as in [1, Ta-

bles I-VII]: 8 ranges from 0 to 75at 5° increments, and?,

has three values 18R, 20A/2 and 304/2. The optimized

and normalized parameters are given in Table Il. This single

profile yields maximum reflection-113 dB over allR,, ¢
The 2-D case can be analyzed in the same way than the T@nbinations involved, even without the weighting function

case. The analysis is lengthy, but the result greatly resemblesiised in [1]. Note that a separate profile is optimized for each

1-D case. However, we have found that the approach utilizegsolution in [1].

Note that the conductivity values are normalized iy

I1l. TwoO-DIMENSIONAL EXPRESSION
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TABLE Il The utilization of the 1-D reflection formula in 2-D problem
OPTIMIZED FOUR-LAYER CONDUCTIVITY PROFILE FOR AWAVEGUIDE seems to be generalizable to three-dimensional (3-D) case also;
this needs still to be confirmed. An analysis for evanescent
waves is also a preferred extension of the present work.

of 0001455 | o 03068 | o7 1.7396
of 002817 | of 05949 | o  3.4888
o 01211 | o} 1.0237

APPENDIX

Matlab-code “rhold” evaluates the reflection coefficient of
a 1-D PML layer. Input parameters are given in (3). The con-
ductivity values are given as a single vecter™

Optimized PML, simulation

x  Optimized PML, prediction function r = rho_1d(Q, R, s);
_ 20 PR St ivsietivyiimmel - % Jaakko Juntunen 16.11.2000
8 N = length(s); W = 2/Q*sin(pi*Q./R);
B ol k delta = 2*asin(W/2);
& for i = 1N,
g 00000 60009000 ea0os TG, = W 4 s(i)*cos(pi*Q./R);
§ 60 P-C el hacaatl e- end( ) J () (p )
% CUM= zeros(size(R));
= -80} for | = 1:N,

CUM= CUM+ T(N+1—i, }); CUM = 1./CUM;

4 . ‘ / end,
10z 0.09 0.14 019 U= (*W + CUM).*exp(j*k_delta/2);

Normalized frequency 1/R, r = (U — exp(*k_delta))./(1 + U).

Fig.2. Predicted and simulated reflection coefficient as functions of frequency “ " . -
in a parallel-plate waveguide problem. Four-layer polynomial and optimized Matlab-code “rho2d” evaluates the reflection coefficient of

conductivity profiles are used. a 2-D PML layer. Input parameters are propagation direction
and the parameters given in (13)—(15). The conductivity values

As a second example, we consider a parallel-plate Waveguﬂfg given as a single vectos.
problem(Z = 1, Q> = 0.99, d = 12Ay). The normalized

cut-off frequency of the waveguide j&¥ ~ 0.059. We optimize function r = rho_2d(th, R2, Z, Q2, s);
a 4-layer PML in a band starting from33 - f¥ = 0.078. A % Jaakko Juntunen 16.11.2000
wave componenf” forms an anglex(f) = sin~!(fN/fN) Q1 = Q2/(cos(th)*sqrt(1+Z "2));

with the z-axis. Thus, we choose four frequency-angle paiRl = R2*sqrt(1+Z  "2)/(Z*cos(th));
(fN, a(fN)) as design parameters. A good choicgds = I = rho_1d(Q1, R1, cos(th)*s).
[0.08, 0.098, 0.145, 0.187]; the related conductivities are given
in Table Ill. REFERENCES

. Fig. 2 presents thg predicted and simulated reflectpn cpefﬂ— 1] S.C. Winton and C. M. Rappaport, “Specifying PML conductivities by
cients of the waveguide problem. The reference solution is ob- ~ considering numerical reflection dependenci¢EEE Trans. Antennas
tained using a much larger computational volume. Also shown _ Propagat, vol. 48, pp. 1055-1063, July 2000.

. . : - [2] J. P. Berenger, “A perfectly matched layer for the absorption of electro-
are results due to a polynomial profile of equal thickness with magnetic waves,J. Comput. Physvol. 114, pp. 185-200, Oct. 1994,

parameters?,;, = 10~ andn = 2, given in [5]. Optimized [3] Z. Wu and J. Fang, “Numerical implementation and performance of

profile results reflection less than82 dB over a bang”™ = perfectly matched layer boundary condition for waveguide structures,”
0.078 - - - 80.193, while the polynomial profile yields reflection \EEE Trans. Microwave Theary Teghol. 43, pp. 2676-2683, Dec.
less than—54 dB over the same band. Due to numerical dis- [4] J.-P. Berenger, “Perfectly matched layer for the FDTD solution of wave-
persion, the zeros ip are not perfect. Using a truly 2-D opti- structure interaction problemslEEE Trans. Antennas Propagatol.

g X R . 44, pp. 110-117, Jan. 1996.
mization, they can be made exact, but the overall absorption i 5] J. Fang and Z. Wu, “Closed-form expression of numerical reflection

not improved by doing so. Therefore, 1-D based optimization is”  coefficient at PML interfaces and optimization of PML performance,”
recommended. IEEE Microwave Guided Wave Letvol. 6, pp. 332—-334, Sept. 1996.
[6] W. C. Chew and J. M. Jin, “Perfectly matched layers in the discretized
space: an analysis and optimizatio&fectromagneticsvol. 16, no. 4,

V. CONCLUSIONS pp. 325-340, July 1996.
. . . . ~ [7] G.LazziandO.P.Gandhi, “Onthe optimal design of the PML absorbing
Closed-form reflection coefficient for discretized PML is boundary condition for the FDTD codelEEE Trans. Antennas Prop-

given for propagating plane waves. Surprisingly, perfect ab- _ agat, vol. 45, pp. 915-916, May 1997.

. - . . . [8] E. A. Marengo, C. M. Rappaport, and E. L. Miller, “Optimum PML
sorption can be obtained for discrétg «)-pairs. Polynomial ABC conductivity profile in FDTD.”IEEE Trans. Magn.vol. 35, pp.

conductivity profiles are not optimal in general. 1506-1509, May 1999.



	MTT023
	Return to Contents


